Regression of Hand Movements from sEMG Data with Recurrent Neural Networks

Philipp Koch, Mark Dreier, Anna Larsen, Tim J. Parbs, Marco Maass, Huy Phan, Alfred Mertins

Abstract

Most wearable human-machine interfaces concerning hand movements only focus on classifying a limited number of hand gestures. With the introduction of deep learning, surface electromyography based hand gesture classification systems improved drastically. Therefore, it is worth investigating whether the classification can be replaced by a movement regression of all the different movable hand parts. As recurrent neural networks based approaches have proven their abilities of solving the classification problem we also choose them for the regression problem. Experiments were conducted with multiple different network architectures on several databases. Furthermore, due to the lack of a reliable measure to compare different gesture regression approaches we propose an interpretable and reproducible new error measure that can even handle noisy ground truth data. The results reveal the general possibility of regressing detailed hand movements. Even with the relatively simple networks the hand gestures can be regressed quite accurately.

OriginalspracheEnglisch
Titel2020 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC)
Seitenumfang5
Herausgeber (Verlag)IEEE
Erscheinungsdatum07.2020
Seiten3783-3787
Aufsatznummer9176278
ISBN (Print)978-1-7281-1991-5
ISBN (elektronisch)978-1-7281-1990-8
DOIs
PublikationsstatusVeröffentlicht - 07.2020
Veranstaltung42nd Annual International Conferences of the IEEE Engineering in Medicine and Biology Society - Montreal, Kanada
Dauer: 20.07.202024.07.2020
Konferenznummer: 162693

Fingerprint

Untersuchen Sie die Forschungsthemen von „Regression of Hand Movements from sEMG Data with Recurrent Neural Networks“. Zusammen bilden sie einen einzigartigen Fingerprint.

Zitieren