Recurrent Neural Networks with Weighting Loss for Early Prediction of Hand Movements

Abstract

We propose in this work an approach for earlyprediction of hand movements using recurrent neural networks(RNNs) and a novel weighting loss. The proposed loss functionleverages the outputs of an RNN at different time steps andweights their contributions to the final loss linearly over timesteps. Additionally, a sample weighting scheme also constitutesa part of the weighting loss to deal with the scarcity of thesamples where a change of hand movements takes place. Theexperiments conducted with the Ninapro database reveal thatour proposed approach not only improves the performance inthe early prediction task but also obtains state of the art resultsin classification of hand movements. These results are especiallypromising for the amputees.
OriginalspracheEnglisch
Seitenumfang5
PublikationsstatusVeröffentlicht - 01.09.2018
Veranstaltung26th European Signal Processing Conference - Rome, Italien
Dauer: 03.09.201807.09.2018
http://www.eusipco2018.org/

Tagung, Konferenz, Kongress

Tagung, Konferenz, Kongress26th European Signal Processing Conference
KurztitelEUSIPCO 2018
Land/GebietItalien
OrtRome
Zeitraum03.09.1807.09.18
Internetadresse

Fingerprint

Untersuchen Sie die Forschungsthemen von „Recurrent Neural Networks with Weighting Loss for Early Prediction of Hand Movements“. Zusammen bilden sie einen einzigartigen Fingerprint.

Zitieren