Projekte pro Jahr
Abstract
One of the common obstacles for learning causal models from data is that high-order conditional independence (CI) relationships between random variables are difficult to estimate. Since CI tests with conditioning sets of low order can be performed accurately even for a small number of observations, a reasonable approach to determine casual structures is to base merely on the low-order CIs. Recent research has confirmed that, e.g. in the case of sparse true causal models, structures learned even from zero- and first-order conditional independencies yield good approximations of the models. However, a challenging task here is to provide methods that faithfully explain a given set of low-order CIs. In this paper, we propose an algorithm which, for a given set of conditional independencies of order less or equal to k, where k is a small fixed number, computes a faithful graphical representation of the given set. Our results complete and generalize the previous work on learning from pairwise marginal independencies. Moreover, they enable to improve upon the 0-1 graph model which, e.g. is heavily used in the estimation of genome networks.
Originalsprache | Englisch |
---|---|
Seiten | 10302-10309 |
Seitenumfang | 8 |
DOIs | |
Publikationsstatus | Veröffentlicht - 03.04.2020 |
Veranstaltung | The Thirty-Fourth AAAI Conference on Artificial Intelligence - New York, USA / Vereinigte Staaten Dauer: 07.02.2020 → 12.02.2020 |
Tagung, Konferenz, Kongress
Tagung, Konferenz, Kongress | The Thirty-Fourth AAAI Conference on Artificial Intelligence |
---|---|
Kurztitel | AAAI-20 |
Land/Gebiet | USA / Vereinigte Staaten |
Ort | New York |
Zeitraum | 07.02.20 → 12.02.20 |
DFG-Fachsystematik
- 409-01 Theoretische Informatik
Fingerprint
Untersuchen Sie die Forschungsthemen von „Recovering Causal Structures from Low-Order Conditional Independencies“. Zusammen bilden sie einen einzigartigen Fingerprint.Projekte
- 1 Abgeschlossen
-
Kausalität: algorithmischer Ansatz und komplexitätstheoretische Perspektive
Liskiewicz, M. & Textor, J.
01.01.16 → 31.12.22
Projekt: DFG-Projekte › DFG Einzelförderungen