Rank pooling approach for wearable sensor-based adls recognition

Muhammad Adeel Nisar*, Kimiaki Shirahama, Frédéric Li, Xinyu Huang, Marcin Grzegorzek

*Korrespondierende/r Autor/-in für diese Arbeit
1 Zitat (Scopus)

Abstract

This paper addresses wearable-based recognition of Activities of Daily Living (ADLs) which are composed of several repetitive and concurrent short movements having temporal dependencies. It is improbable to directly use sensor data to recognize these long-term composite activities because two examples (data sequences) of the same ADL result in largely diverse sensory data. However, they may be similar in terms of more semantic and meaningful short-term atomic actions. Therefore, we propose a two-level hierarchical model for recognition of ADLs. Firstly, atomic activities are detected and their probabilistic scores are generated at the lower level. Secondly, we deal with the temporal transitions of atomic activities using a temporal pooling method, rank pooling. This enables us to encode the ordering of probabilistic scores for atomic activities at the higher level of our model. Rank pooling leads to a 5–13% improvement in results as compared to the other popularly used techniques. We also produce a large dataset of 61 atomic and 7 composite activities for our experiments.

OriginalspracheEnglisch
Aufsatznummer3463
ZeitschriftSensors (Switzerland)
Jahrgang20
Ausgabenummer12
Seiten (von - bis)1-21
Seitenumfang21
ISSN1424-8220
DOIs
PublikationsstatusVeröffentlicht - 06.2020

Strategische Forschungsbereiche und Zentren

  • Zentren: Zentrum für Künstliche Intelligenz Lübeck (ZKIL)

Fingerprint

Untersuchen Sie die Forschungsthemen von „Rank pooling approach for wearable sensor-based adls recognition“. Zusammen bilden sie einen einzigartigen Fingerprint.

Zitieren