TY - JOUR
T1 - Radiation Necrosis Following Stereotactic Radiosurgery or Fractionated Stereotactic Radiotherapy with High Biologically Effective Doses for Large Brain Metastases
AU - Johannwerner, Leonie
AU - Werner, Elisa M.
AU - Blanck, Oliver
AU - Janssen, Stefan
AU - Cremers, Florian
AU - Yu, Nathan Y.
AU - Rades, Dirk
N1 - Publisher Copyright:
© 2023 by the authors.
PY - 2023/4/26
Y1 - 2023/4/26
N2 - In Radiation Therapy Oncology Group 90-05, the maximum tolerated dose of single-fraction radiosurgery (SRS) for brain metastases of 21–30 mm was 18 Gy (biologically effective dose (BED) 45 Gy12). Since the patients in this study received prior brain irradiation, tolerable BED may be >45 Gy12 for de novo lesions. We investigated SRS and fractionated stereotactic radiotherapy (FSRT) with a higher BED for radiotherapy-naive lesions. Patients receiving SRS (19–20 Gy) and patients treated with FSRT (30–48 Gy in 3–12 fractions) with BED > 49 Gy12 for up to 4 brain metastases were compared for grade ≥ 2 radiation necrosis (RN). In the entire cohort (169 patients with 218 lesions), 1-year and 2-year RN rates were 8% after SRS vs. 2% and 13% after FSRT (p = 0.73) in per-patient analyses, and 7% after SRS vs. 7% and 10% after FSRT (p = 0.59) in per-lesion analyses. For lesions ≤ 20 mm (137 patients with 185 lesions), the RN rates were 4% (SRS) vs. 0% and 15%, respectively, (FSRT) (p = 0.60) in per-patient analyses, and 3% (SRS) vs. 0% and 11%, respectively, (FSRT) (p = 0.80) in per-lesion analyses. For lesions > 20 mm (32 patients with 33 lesions), the RN rates were 50% (SRS) vs. 9% (FSRT) (p = 0.012) in both per-patient and per-lesion analyses. In the SRS group, a lesion size > 20 mm was significantly associated with RN; in the FSRT group, lesion size had no impact on RN. Given the limitations of this study, FSRT with BED > 49 Gy12 was associated with low RN risk and may be safer than SRS for brain metastases > 20 mm.
AB - In Radiation Therapy Oncology Group 90-05, the maximum tolerated dose of single-fraction radiosurgery (SRS) for brain metastases of 21–30 mm was 18 Gy (biologically effective dose (BED) 45 Gy12). Since the patients in this study received prior brain irradiation, tolerable BED may be >45 Gy12 for de novo lesions. We investigated SRS and fractionated stereotactic radiotherapy (FSRT) with a higher BED for radiotherapy-naive lesions. Patients receiving SRS (19–20 Gy) and patients treated with FSRT (30–48 Gy in 3–12 fractions) with BED > 49 Gy12 for up to 4 brain metastases were compared for grade ≥ 2 radiation necrosis (RN). In the entire cohort (169 patients with 218 lesions), 1-year and 2-year RN rates were 8% after SRS vs. 2% and 13% after FSRT (p = 0.73) in per-patient analyses, and 7% after SRS vs. 7% and 10% after FSRT (p = 0.59) in per-lesion analyses. For lesions ≤ 20 mm (137 patients with 185 lesions), the RN rates were 4% (SRS) vs. 0% and 15%, respectively, (FSRT) (p = 0.60) in per-patient analyses, and 3% (SRS) vs. 0% and 11%, respectively, (FSRT) (p = 0.80) in per-lesion analyses. For lesions > 20 mm (32 patients with 33 lesions), the RN rates were 50% (SRS) vs. 9% (FSRT) (p = 0.012) in both per-patient and per-lesion analyses. In the SRS group, a lesion size > 20 mm was significantly associated with RN; in the FSRT group, lesion size had no impact on RN. Given the limitations of this study, FSRT with BED > 49 Gy12 was associated with low RN risk and may be safer than SRS for brain metastases > 20 mm.
UR - http://www.scopus.com/inward/record.url?scp=85160232027&partnerID=8YFLogxK
UR - https://www.mendeley.com/catalogue/36fd6d90-4b54-3277-8cc5-b2c2fac59eb9/
U2 - 10.3390/biology12050655
DO - 10.3390/biology12050655
M3 - Journal articles
C2 - 37237469
AN - SCOPUS:85160232027
SN - 2079-7737
VL - 12
JO - Biology
JF - Biology
IS - 5
M1 - 655
ER -