Quantum Machine Learning for Join Order Optimization using Variational Quantum Circuits.

Abstract

The optimization of queries speeds up query processing in databases. One of the most time-consuming tasks in query processing is the join operation, where the order of the joins plays a crucial role in determining the number of tuples to be processed for intermediate results, and hence, the overall processing costs. In this paper, we use a variational quantum circuit (VQC) to create a hybrid classical-quantum machine learning algorithm to predict efficient join orders by learning from past join orders. We develop an encoding of the join order problem using a low number of qubits. We show that VQCs with filtering of cross joins outperform the classical dynamic programming optimizer of PostgreSQL with a 2.7\% faster execution time.
OriginalspracheEnglisch
TitelBiDEDE@SIGMOD
Seitenumfang7
Erscheinungsdatum2023
Seiten5:1-5:7
DOIs
PublikationsstatusVeröffentlicht - 2023

Strategische Forschungsbereiche und Zentren

  • Zentren: Zentrum für Künstliche Intelligenz Lübeck (ZKIL)
  • Querschnittsbereich: Intelligente Systeme

DFG-Fachsystematik

  • 409-06 Informationssysteme, Prozess- und Wissensmanagement

Zitieren