Quantitative comparison of generative shape models for medical images

Hristina Uzunova*, Paul Kaftan, Matthias Wilms, Nils D. Forkert, Heinz Handels, Jan Ehrhardt

*Korrespondierende/r Autor/-in für diese Arbeit

Abstract

Generative shape models play an important role in medical image analysis. Conventional methods like PCA-based statistical shape models (SSMs) and their various extensions have shown great success modeling natural shape variations in medical images, despite their limitations. Corresponding deep learning-based methods like (variational) autoencoders are well known to overcome many of those limitations. In this work, we compare two conventional and two deep learning-based generative shape modeling approaches to shed light on their limitations and advantages. Experiments on a publicly available 2D chest X-ray data set show that the deep learning methods achieve better specificity and generalization abilities for large training set sizes. However, for smaller training sets, the conventional SSMs are more robust and their latent space is more compact and easier to interpret.

OriginalspracheEnglisch
TitelBildverarbeitung für die Medizin 2020
Redakteure/-innenThomas Tolxdorff, Thomas M. Deserno, Heinz Handels, Andreas Maier, Klaus H. Maier-Hein, Christoph Palm
Seitenumfang7
Herausgeber (Verlag)Springer Vieweg, Wiesbaden
Erscheinungsdatum12.02.2020
Seiten201-207
ISBN (Print)978-3-658-29266-9
ISBN (elektronisch)978-3-658-29267-6
DOIs
PublikationsstatusVeröffentlicht - 12.02.2020
VeranstaltungBildverarbeitung für die Medizin 2020 - International workshop on Algorithmen - Systeme - Anwendungen
- Berlin, Deutschland
Dauer: 15.03.202017.03.2020
Konferenznummer: 237969

Fingerprint

Untersuchen Sie die Forschungsthemen von „Quantitative comparison of generative shape models for medical images“. Zusammen bilden sie einen einzigartigen Fingerprint.

Zitieren