PtRNApred: Computational identification and classification of post-transcriptional RNA

Yask Gupta, Mareike Witte*, Steffen Möller, Ralf J. Ludwig, Tobias Restle, Detlef Zillikens, Saleh M. Ibrahim

*Korrespondierende/r Autor/-in für diese Arbeit
1 Zitat (Scopus)

Abstract

Non-coding RNAs (ncRNAs) are known to play important functional roles in the cell. However, their identification and recognition in genomic sequences remains challenging. In silicomethods, such as classification tools, offer a fast and reliable way for such screening and multiple classifiers have already been developed to predict well-defined subfamilies of RNA. So far, however, out of all the ncRNAs, only tRNA, miRNA and snoRNA can be predicted with a satisfying sensitivity and specificity. We here present ptRNApred, a tool to detect and classify subclasses of non-coding RNA that are involved in the regulation of post-transcriptional modifications or DNA replication, which we here call post-transcriptional RNA (ptRNA). It (i) detects RNA sequences coding for post-transcriptional RNA from the genomic sequence with an overall sensitivity of 91% and a specificity of 94% and (ii) predicts ptRNA-subclasses that exist in eukaryotes: snRNA, snoRNA, RNase P, RNase MRP, Y RNA or telomerase RNA. AVAILABILITY: The ptRNApred software is open for public use on http://www.ptrnapred.org/.

OriginalspracheEnglisch
Aufsatznummere167
ZeitschriftNucleic Acids Research
Jahrgang42
Ausgabenummer22
ISSN0305-1048
DOIs
PublikationsstatusVeröffentlicht - 16.12.2014

Fingerprint

Untersuchen Sie die Forschungsthemen von „PtRNApred: Computational identification and classification of post-transcriptional RNA“. Zusammen bilden sie einen einzigartigen Fingerprint.

Zitieren