Proposal of Semantic Annotation for German Metadata Using Bidirectional Recurrent Neural Networks

Abstract

The distributed nature of our digital healthcare and the rapid emergence of new data sources prevents a compelling overview and the joint use of new data. Data integration, e.g., with metadata and semantic annotations, is expected to overcome this challenge. In this paper, we present an approach to predict UMLS codes to given German metadata using recurrent neural networks. The augmentation of the training dataset using the Medical Subject Headings (MeSH), particularly the German translations, also improved the model accuracy. The model demonstrates robust performance with 75% accuracy and aims to show that increasingly sophisticated machine learning tools can already play a significant role in data integration.

OriginalspracheEnglisch
ZeitschriftStudies in Health Technology and Informatics
Jahrgang294
Seiten (von - bis)357-361
Seitenumfang5
ISSN0926-9630
DOIs
PublikationsstatusVeröffentlicht - 25.05.2022

Strategische Forschungsbereiche und Zentren

  • Zentren: Zentrum für Künstliche Intelligenz Lübeck (ZKIL)

Fingerprint

Untersuchen Sie die Forschungsthemen von „Proposal of Semantic Annotation for German Metadata Using Bidirectional Recurrent Neural Networks“. Zusammen bilden sie einen einzigartigen Fingerprint.

Zitieren