Predicting the benefit of sample size extension in multiclass k-NN classification

Christian Kier, Til Aach

Abstract

In industrial quality inspection obtaining the training data needed for classification problems is still a very costly task. Nevertheless, the classifier quality is crucial for economic success. Thus, the question whether the influence of the training data on the classification error has been fully exploited and enough data has been obtained is very important. This paper introduces a method to answer this question for a specific problem. To be able to make a concrete statement and not only general recommendations, we focus on the k-NN classifier, since it is widely used in industrial implementations. The method is tested on four different multiclass problems: original data from an optical media inspection problem, the MNIST database, and two artificial problems with known probability densities.

OriginalspracheEnglisch
Titel18th International Conference on Pattern Recognition (ICPR'06)
Seitenumfang4
Herausgeber (Verlag)IEEE
Erscheinungsdatum01.12.2006
Seiten332-335
Aufsatznummer1699533
ISBN (Print)978-076952521-1
DOIs
PublikationsstatusVeröffentlicht - 01.12.2006
Veranstaltung18th International Conference on Pattern Recognition
- Hong Kong, Hong Kong
Dauer: 20.08.200624.08.2006
Konferenznummer: 69443

Fingerprint

Untersuchen Sie die Forschungsthemen von „Predicting the benefit of sample size extension in multiclass k-NN classification“. Zusammen bilden sie einen einzigartigen Fingerprint.

Zitieren