Predicting speech from a cortical hierarchy of event-based time scales

Lea Maria Schmitt*, Julia Erb, Sarah Tune, Anna U. Rysop, Gesa Hartwigsen, Jonas Obleser*

*Korrespondierende/r Autor/-in für diese Arbeit
11 Zitate (Scopus)

Abstract

How do predictions in the brain incorporate the temporal unfolding of context in our natural environment? We here provide evidence for a neural coding scheme that sparsely updates contextual representations at the boundary of events. This yields a hierarchical, multilayered organization of predictive language comprehension. Training artificial neural networks to predict the next word in a story at five stacked time scales and then using model-based functional magnetic resonance imaging, we observe an event-based “surprisal hierarchy” evolving along a temporoparietal pathway. Along this hierarchy, surprisal at any given time scale gated bottom-up and top-down connectivity to neighboring time scales. In contrast, surprisal derived from continuously updated context influenced temporoparietal activity only at short time scales. Representing context in the form of increasingly coarse events constitutes a network architecture for making predictions that is both computationally efficient and contextually diverse.

OriginalspracheEnglisch
Aufsatznummereabi6070
ZeitschriftScience Advances
Jahrgang7
Ausgabenummer49
DOIs
PublikationsstatusVeröffentlicht - 12.2021

Strategische Forschungsbereiche und Zentren

  • Forschungsschwerpunkt: Gehirn, Hormone, Verhalten - Center for Brain, Behavior and Metabolism (CBBM)

Fingerprint

Untersuchen Sie die Forschungsthemen von „Predicting speech from a cortical hierarchy of event-based time scales“. Zusammen bilden sie einen einzigartigen Fingerprint.

Zitieren