Abstract
For a Sperner family A ⊆ 2[n] let Ai denote the family of all i-element sets in A. We sharpen the LYM inequality ∑i |Ai|/(in) ≤ 1 by adding to the LHS all possible products of fractions |Ai|/(i n), with suitable coefficients. A corresponding inequality is established also for the linear lattice and the lattice of subsets of a multiset (with all elements having the same multiplicity).
Originalsprache | Englisch |
---|---|
Zeitschrift | Combinatorica |
Jahrgang | 25 |
Ausgabenummer | 1 |
Seiten (von - bis) | 19-38 |
Seitenumfang | 20 |
ISSN | 0209-9683 |
DOIs | |
Publikationsstatus | Veröffentlicht - 01.12.2004 |