TY - JOUR
T1 - PKA/AKAP/VR-1 Module:A Common Link of Gs-Mediated Signaling to Thermal Hyperalgesia
AU - Rathee, Parvinder Kaur
AU - Distler, Carsten
AU - Obreja, Otilia
AU - Neuhuber, Winfried
AU - Wang, Ging Kuo
AU - Wang, Sho Ya
AU - Nau, Carla
AU - Kress, Michaela
N1 - Copyright:
Copyright 2020 Elsevier B.V., All rights reserved.
PY - 2002/6/1
Y1 - 2002/6/1
N2 - Inflammatory mediators not only activate "pain-"sensing neurons, the nociceptors, to trigger acute pain sensations, more important, they increase nociceptor responsiveness to produce inflammatory hyperalgesia. For example, prostaglandins activate Gs-protein-coupled receptors and initiate cAMP- and protein kinase A (PKA)-mediated processes. We demonstrate for the first time at the cellular level that heat-activated ionic currents were potentiated after exposure to the cAMP activator forskolin in rat nociceptive neurons. The potentiation was prevented in the presence of the selective PKA inhibitor PKl14-22, suggesting PKA-mediated phosphorylation of the heat transducer protein. PKA regulatory subunits were found in close vicinity to the plasma membrane in these neurons, and PKA catalytic subunits only translocated to the cell periphery when activated. The translocation and the current potentiation were abolished in the presence of an A-kinase anchoring protein (AKAP) inhibitor. Similar current changes after PKA activation were obtained from human embryonic kidney 293t cells transfected with the wild-type heat transducer protein vanilloid receptor 1 (VR-1). The forskolin-induced current potentiation was greatly reduced in cells transfected with VR-1 mutants carrying point mutations at the predicted PKA phosphorylation sites. The heat transducer VR-1 is therefore suggested as the molecular target of PKA phosphorylation, and potentiation of current responses to heat depends on phosphorylation at predicted PKA consensus sites. Thus, the PKA/AKAP/VR-1 module presents as the molecular correlate of Gs-mediated inflammatory hyperalgesia.
AB - Inflammatory mediators not only activate "pain-"sensing neurons, the nociceptors, to trigger acute pain sensations, more important, they increase nociceptor responsiveness to produce inflammatory hyperalgesia. For example, prostaglandins activate Gs-protein-coupled receptors and initiate cAMP- and protein kinase A (PKA)-mediated processes. We demonstrate for the first time at the cellular level that heat-activated ionic currents were potentiated after exposure to the cAMP activator forskolin in rat nociceptive neurons. The potentiation was prevented in the presence of the selective PKA inhibitor PKl14-22, suggesting PKA-mediated phosphorylation of the heat transducer protein. PKA regulatory subunits were found in close vicinity to the plasma membrane in these neurons, and PKA catalytic subunits only translocated to the cell periphery when activated. The translocation and the current potentiation were abolished in the presence of an A-kinase anchoring protein (AKAP) inhibitor. Similar current changes after PKA activation were obtained from human embryonic kidney 293t cells transfected with the wild-type heat transducer protein vanilloid receptor 1 (VR-1). The forskolin-induced current potentiation was greatly reduced in cells transfected with VR-1 mutants carrying point mutations at the predicted PKA phosphorylation sites. The heat transducer VR-1 is therefore suggested as the molecular target of PKA phosphorylation, and potentiation of current responses to heat depends on phosphorylation at predicted PKA consensus sites. Thus, the PKA/AKAP/VR-1 module presents as the molecular correlate of Gs-mediated inflammatory hyperalgesia.
UR - http://www.scopus.com/inward/record.url?scp=0036616952&partnerID=8YFLogxK
U2 - 10.1523/jneurosci.22-11-04740.2002
DO - 10.1523/jneurosci.22-11-04740.2002
M3 - Journal articles
C2 - 12040081
AN - SCOPUS:0036616952
SN - 0270-6474
VL - 22
SP - 4740
EP - 4745
JO - Journal of Neuroscience
JF - Journal of Neuroscience
IS - 11
ER -