Abstract
This paper provides a way for determining the Kolmogorov-Sinai entropy of time-discrete dynamical systems on the base of quantifying ordinal patterns obtained from a finite set of observables. As a consequence, it is shown that the Kolmogorov-Sinai entropy is bounded from above by a quantity which generalizes the concept of permutation entropy. In this framework, the determination of the Kolmogorov-Sinai entropy of a multidimensional system by use of only a single one-dimensional observable and Takens' embedding theorem is discussed.
Originalsprache | Englisch |
---|---|
Zeitschrift | Discrete and Continuous Dynamical Systems |
Jahrgang | 32 |
Ausgabenummer | 3 |
Seiten (von - bis) | 891-900 |
Seitenumfang | 10 |
ISSN | 1078-0947 |
DOIs | |
Publikationsstatus | Veröffentlicht - 01.03.2012 |