Abstract
Statistical shape, appearance, and motion models are widely used as priors in medical image analysis to, for example, constrain image segmentation [1] and motion estimation results [2]. These models try to learn a compact parameterization of the space of plausible object instances from a population of observed samples using low-rank matrix approximation methods (SVD or PCA). The quality of these models heavily depends on the quantity and quality of the training population. As it is usually quite challenging to collect large and representative training populations, models used in practice often suffer from a limited expressiveness
Originalsprache | Englisch |
---|---|
Titel | Bildverarbeitung für die Medizin 2017 |
Redakteure/-innen | K.H. Maier-Hein, T.M. Deserno, H. Handels, T. Tolxdorff |
Seitenumfang | 2 |
Herausgeber (Verlag) | Springer Vieweg, Berlin Heidelberg |
Erscheinungsdatum | 01.03.2017 |
Seiten | 215-216 |
ISBN (Print) | 978-3-662-54344-3 |
ISBN (elektronisch) | 978-3-662-54345-0 |
DOIs | |
Publikationsstatus | Veröffentlicht - 01.03.2017 |
Veranstaltung | Workshop on Bildverarbeitung fur die Medizin 2017 - Heidelberg, Deutschland Dauer: 12.03.2017 → 14.03.2017 |