Patch-Based Learning of Shape, Appearance, and Motion Models from Few Training Samples by Low-Rank Matrix Completion

Matthias Wilms, Heinz Handels, Jan Ehrhardt

Abstract

Statistical shape, appearance, and motion models are widely used as priors in medical image analysis to, for example, constrain image segmentation [1] and motion estimation results [2]. These models try to learn a compact parameterization of the space of plausible object instances from a population of observed samples using low-rank matrix approximation methods (SVD or PCA). The quality of these models heavily depends on the quantity and quality of the training population. As it is usually quite challenging to collect large and representative training populations, models used in practice often suffer from a limited expressiveness
OriginalspracheEnglisch
TitelBildverarbeitung für die Medizin 2017
Redakteure/-innenK.H. Maier-Hein, T.M. Deserno, H. Handels, T. Tolxdorff
Seitenumfang2
Herausgeber (Verlag)Springer Vieweg, Berlin Heidelberg
Erscheinungsdatum01.03.2017
Seiten215-216
ISBN (Print)978-3-662-54344-3
ISBN (elektronisch)978-3-662-54345-0
DOIs
PublikationsstatusVeröffentlicht - 01.03.2017
VeranstaltungWorkshop on Bildverarbeitung fur die Medizin 2017
- Heidelberg, Deutschland
Dauer: 12.03.201714.03.2017

Fingerprint

Untersuchen Sie die Forschungsthemen von „Patch-Based Learning of Shape, Appearance, and Motion Models from Few Training Samples by Low-Rank Matrix Completion“. Zusammen bilden sie einen einzigartigen Fingerprint.

Zitieren