Parameter Optimization for Loop Closure Detection in Closed Environments

Nils Rottmann, Ralf Bruder, Honghu Xue, Achim Schweikard, Elmar Rueckert

Abstract

Tuning parameters is crucial for the performance of localization and mapping algorithms. In general, the tuning of the parameters requires expert knowledge and is sensitive to information about the structure of the environment. In order to design truly autonomous systems the robot has to learn the parameters automatically. Therefore, we propose a parameter optimization approach for loop closure detection in closed environments which requires neither any prior information, e.g. robot model parameters, nor expert knowledge. It relies on several path traversals along the boundary line of the closed environment. We demonstrate the performance of our method in challenging real world scenarios with limited sensing capabilities. These scenarios are exemplary for a wide range of practical applications including lawn mowers and household robots.
OriginalspracheEnglisch
Seitenumfang8
PublikationsstatusVeröffentlicht - 12.11.2020
VeranstaltungProceedings of International Conference on Intelligent Robots and Systems 2020 - Las Vegas, USA / Vereinigte Staaten
Dauer: 25.10.202029.10.2020

Tagung, Konferenz, Kongress

Tagung, Konferenz, KongressProceedings of International Conference on Intelligent Robots and Systems 2020
KurztitelIROS 2020
Land/GebietUSA / Vereinigte Staaten
OrtLas Vegas
Zeitraum25.10.2029.10.20

Fingerprint

Untersuchen Sie die Forschungsthemen von „Parameter Optimization for Loop Closure Detection in Closed Environments“. Zusammen bilden sie einen einzigartigen Fingerprint.

Zitieren