Parallel Multivariate Meta-Theorems

Max Bannach, Till Tantau

Abstract

Fixed-parameter tractability is based on the observation that many hard problems become tractable even on large inputs as long as certain input parameters are small. Originally, ``tractable'' just meant ``solvable in polynomial time,'' but especially modern hardware raises the question of whether we can also achieve ``solvable in polylogarithmic parallel time.'' A framework for this study of \emph{parallel fixed-parameter tractability} is available and a number of isolated algorithmic results have been obtained in recent years, but one of the unifying core tools of classical FPT theory has been missing: algorithmic meta-theorems. We establish two such theorems by giving new upper bounds on the circuit depth necessary to solve the model checking problem for monadic second-order logic, once parameterized by the tree width and the formula (this is a parallel version of Courcelle's Theorem) and once by the tree depth and the formula. For our proofs we refine the analysis of earlier algorithms, especially of Bodlaender's, but also need to add new ideas, especially in the context where the parallel runtime is bounded by a function of the parameter and does not depend on the length of the input.

OriginalspracheEnglisch
Titel11th International Symposium on Parameterized and Exact Computation (IPEC 2016)
Redakteure/-innenJiong Guo , Danny Hermelin
Seitenumfang14
Band63
ErscheinungsortDagstuhl, Germany
Herausgeber (Verlag)Schloss Dagstuhl - Leibniz-Zentrum für Informatik
Erscheinungsdatum01.02.2017
Seiten4 - 17
ISBN (Print)978-3-95977-023-1
DOIs
PublikationsstatusVeröffentlicht - 01.02.2017
Veranstaltung11th International Symposium on Parameterized and Exact Computation (IPEC 2016)
- Aarhus, Dänemark
Dauer: 24.08.201626.08.2016
http://drops.dagstuhl.de/portals/extern/index.php?semnr=16026

Fingerprint

Untersuchen Sie die Forschungsthemen von „Parallel Multivariate Meta-Theorems“. Zusammen bilden sie einen einzigartigen Fingerprint.

Zitieren