Orthogonal polynomial wavelets

Bernd Fischer*, Woula Themistoclakis

*Korrespondierende/r Autor/-in für diese Arbeit
4 Zitate (Scopus)

Abstract

Recently Fischer and Prestin presented a unified approach for the construction of polynomial wavelets. In particular, they characterized those parameter sets which lead to orthogonal scaling functions. Here, we extend their results to the wavelets. We work out necessary and sufficient conditions for the wavelets to be orthogonal to each other. Furthermore, we show how these computable characterizations lead to attractive decomposition and reconstruction schemes. The paper concludes with a study of the special case of Bernstein-Szegö weight functions.

OriginalspracheEnglisch
ZeitschriftNumerical Algorithms
Jahrgang30
Ausgabenummer1
Seiten (von - bis)37-58
Seitenumfang22
ISSN1017-1398
DOIs
PublikationsstatusVeröffentlicht - 01.12.2002

Fingerprint

Untersuchen Sie die Forschungsthemen von „Orthogonal polynomial wavelets“. Zusammen bilden sie einen einzigartigen Fingerprint.

Zitieren