Abstract
Recently Fischer and Prestin presented a unified approach for the construction of polynomial wavelets. In particular, they characterized those parameter sets which lead to orthogonal scaling functions. Here, we extend their results to the wavelets. We work out necessary and sufficient conditions for the wavelets to be orthogonal to each other. Furthermore, we show how these computable characterizations lead to attractive decomposition and reconstruction schemes. The paper concludes with a study of the special case of Bernstein-Szegö weight functions.
Originalsprache | Englisch |
---|---|
Zeitschrift | Numerical Algorithms |
Jahrgang | 30 |
Ausgabenummer | 1 |
Seiten (von - bis) | 37-58 |
Seitenumfang | 22 |
ISSN | 1017-1398 |
DOIs | |
Publikationsstatus | Veröffentlicht - 01.12.2002 |