Optimization of Gabor Features for Text-Independent Speaker Identification

V. Mildner, S. Goetze, Karl-Dirk-Kammeyer [Unknown], A. Mertins

Abstract

For text-independent speaker identification a prominent combination is to use Gaussian mixture models (GMM) for classification while relying on Mel-frequency cepstral coefficients (MFCC) as features. To take temporal information into account the time difference of features of adjacent speech frames are appended to the initial features. In this paper we investigate the applicability of spectro-temporal features obtained from Gabor-filters and present an algorithm for optimizing the possible parameters. Simulation results on a database show that spectro-temporal features achieve higher recognition rates than purely temporal features for clean speech as well as for disturbed speech.
OriginalspracheEnglisch
Titel2007 IEEE International Symposium on Circuits and Systems
Seitenumfang4
Herausgeber (Verlag)IEEE
Erscheinungsdatum01.05.2007
Seiten3932-3935
ISBN (Print)1-4244-0920-9
ISBN (elektronisch)1-4244-0921-7
DOIs
PublikationsstatusVeröffentlicht - 01.05.2007
Veranstaltung2007 IEEE International Symposium on Circuits and Systems - New Orleans, USA / Vereinigte Staaten
Dauer: 27.05.200730.05.2007
Konferenznummer: 70268

Fingerprint

Untersuchen Sie die Forschungsthemen von „Optimization of Gabor Features for Text-Independent Speaker Identification“. Zusammen bilden sie einen einzigartigen Fingerprint.

Zitieren