Optical underwater distance estimation

Mathias Pelka, Martin Mackenberg, Christian Funda, Horst Hellbruck

Abstract

Data communication with high data rate and precise underwater positioning with an accuracy of several centimeters is an unsolved problem. Precise positioning is important for autonomous vehicles. State-of-the-art acoustic communication and distance estimation faces difficulties underwater, e.g. multipath fading or variation of propagation speed. In this work, we propose optical distance estimation, which is the basis for positioning in future work. We combine the Beer-Lambert law and the inverse-square-law to model the underwater channel of the medium. We investigate different wavelengths and employ curve fitting based on the Levenberg-Marquardt algorithm to determine the unknown coefficients of the model, e.g. absorption. Our evaluation shows promising results and distance estimation of up to 25 m in pool water is possible. In stream water we determined a mean error for the optical distance estimation of up to 0.02 m with a wavelength of 470 nm.

OriginalspracheEnglisch
TitelOCEANS 2017 - Aberdeen
Seitenumfang6
Band2017-October
Herausgeber (Verlag)IEEE
Erscheinungsdatum25.10.2017
Seiten1-6
ISBN (Print)978-1-5090-5279-0, 978-1-5386-2111-0
ISBN (elektronisch)978-1-5090-5278-3
DOIs
PublikationsstatusVeröffentlicht - 25.10.2017
VeranstaltungOCEANS 2017 - Aberdeen, Großbritannien / Vereinigtes Königreich
Dauer: 19.06.201722.06.2017

Fingerprint

Untersuchen Sie die Forschungsthemen von „Optical underwater distance estimation“. Zusammen bilden sie einen einzigartigen Fingerprint.

Zitieren