On the Space Complexity of Parameterized Problems

Michael Elberfeld, Christoph Stockhusen, Till Tantau

Abstract

Parameterized complexity theory measures the complexity of computational problems predominantly in terms of their parameterized time complexity. The purpose of the present paper is to demonstrate that the study of parameterized space complexity can give new insights into the complexity of well-studied parameterized problems like the feedback vertex set problem. We show that the undirected and the directed feedback vertex set problems have different parameterized space complexities, unless L = NL; which explains why the two problem variants seem to necessitate different algorithmic approaches even though their parameterized time complexity is the same. For a number of further natural parameterized problems, including the longest common subsequence problem and the acceptance problem for multi-head automata, we show that they lie in or are complete for different parameterized space classes; which explains why previous attempts at proving completeness of these problems for parameterized time classes have failed.
OriginalspracheEnglisch
TitelParameterized and Exact Computation
Redakteure/-innenDimitrios M. Thilikos, Gerhard J. Woeginger
Seitenumfang12
Band7535
ErscheinungsortBerlin, Heidelberg
Herausgeber (Verlag)Springer Berlin Heidelberg
Erscheinungsdatum09.2012
Seiten206-217
ISBN (Print)978-3-642-33292-0
ISBN (elektronisch)978-3-642-33293-7
DOIs
PublikationsstatusVeröffentlicht - 09.2012
Veranstaltung7th International Symposium, IPEC 2012 - Ljubljana, Slowenien
Dauer: 12.09.201214.09.2012

Fingerprint

Untersuchen Sie die Forschungsthemen von „On the Space Complexity of Parameterized Problems“. Zusammen bilden sie einen einzigartigen Fingerprint.

Zitieren