On local smoothness classes of periodic functions

H. N. Mhaskar, J. Prestin

13 Zitate (Scopus)

Abstract

We obtain a characterization of local Besov spaces of periodic functions in terms of trigonometric polynomial operators. We construct a sequence of operators whose values are (global) trigonometric polynomials, and yet their behavior at different points reflects the behavior of the target function near each of these points. In addition to being localized, our operators preserve trigonometric polynomials of degree commensurate with the degree of polynomials given by the operators. Our constructions are "universal;" i.e., they do not require an a priori knowledge about the smoothness of the target functions. Several numerical examples are discussed, including applications to the problem of direction finding in phased array antennas and finding the location of jump discontinuities of derivatives of different order.

OriginalspracheEnglisch
ZeitschriftJournal of Fourier Analysis and Applications
Jahrgang11
Ausgabenummer3
Seiten (von - bis)353-373
Seitenumfang21
ISSN1069-5869
DOIs
PublikationsstatusVeröffentlicht - 01.06.2005

Fingerprint

Untersuchen Sie die Forschungsthemen von „On local smoothness classes of periodic functions“. Zusammen bilden sie einen einzigartigen Fingerprint.

Zitieren