On an orthogonal bivariate trigonometric Schauder basis for the space of continuous functions

Nadiia Derevianko, Vitalii Myroniuk*, Jürgen Prestin

*Korrespondierende/r Autor/-in für diese Arbeit

Abstract

In this paper we construct an orthogonal trigonometric Schauder basis in the space C(T2) which has a small growth of the polynomial degree. The polynomial degree is considered in terms of the ℓ1- and ℓ∞-norm. To construct this basis we use a dyadic anisotropic periodic multiresolution analysis and corresponding wavelet spaces. The multiresolution analysis is formed using the sequence of only rotation matrices. The focus of attention is the estimation of the norm of the corresponding orthogonal projection operator.

OriginalspracheEnglisch
ZeitschriftJournal of Approximation Theory
ISSN0021-9045
DOIs
PublikationsstatusVeröffentlicht - 01.01.2017

Fingerprint

Untersuchen Sie die Forschungsthemen von „On an orthogonal bivariate trigonometric Schauder basis for the space of continuous functions“. Zusammen bilden sie einen einzigartigen Fingerprint.

Zitieren