OCT A-Scan based lung tumor tissue classification with Bidirectional Long Short Term Memory networks

S. Otte*, Christoph Otte, A. Schlaefer, L. Wittig, G. Huttmann, D. Dromann, A. Zeli

*Korrespondierende/r Autor/-in für diese Arbeit

Abstract

This paper presents a novel method for lung tumor tissue classification using Bidirectional Long Short Term Memory networks (BLSTMs). Samples are obtained through Optical Coherence Tomography (OCT) from real soft tissue specimen and represented as data sequences. Such sequences are learned with BLSTMs, which are able to recognize even non-uniformly compressed temporal encoded patterns in sequential data in both forward and backward time-direction. Our experiments indicate that BLSTMs are a suitable choice for this classification task, since they outperform other recurrent architectures. Furthermore, the presented findings lead to promising future investigations in the field of OCT based tissue analysis.

OriginalspracheEnglisch
Titel2013 IEEE International Workshop on Machine Learning for Signal Processing (MLSP)
Herausgeber (Verlag)IEEE
Erscheinungsdatum2013
Aufsatznummer6661944
ISBN (Print)978-147991180-6
DOIs
PublikationsstatusVeröffentlicht - 2013
Veranstaltung2013 16th IEEE International Workshop on Machine Learning for Signal Processing - Southampton, Großbritannien / Vereinigtes Königreich
Dauer: 22.09.201325.09.2013
Konferenznummer: 102379

Strategische Forschungsbereiche und Zentren

  • Forschungsschwerpunkt: Biomedizintechnik
  • Profilbereich: Lübeck Integrated Oncology Network (LION)
  • Zentren: Universitäres Cancer Center Schleswig-Holstein (UCCSH)

Fingerprint

Untersuchen Sie die Forschungsthemen von „OCT A-Scan based lung tumor tissue classification with Bidirectional Long Short Term Memory networks“. Zusammen bilden sie einen einzigartigen Fingerprint.

Zitieren