TY - JOUR
T1 - Novel GNB1 mutations disrupt assembly and function of G protein heterotrimers and cause global developmental delay in humans
AU - Lohmann, Katja
AU - Masuho, Ikuo
AU - Patil, Dipak N.
AU - Baumann, Hauke
AU - Hebert, Eva
AU - Steinrücke, Sofia
AU - Trujillano, Daniel
AU - Skamangas, Nickolas K.
AU - Dobricic, Valerija
AU - Hüning, Irina
AU - Gillessen-Kaesbach, Gabriele
AU - Westenberger, Ana
AU - Savic-Pavicevic, Dusanka
AU - Münchau, Alexander
AU - Oprea, Gabriela
AU - Klein, Christine
AU - Rolfs, Arndt
AU - Martemyanov, Kirill A.
PY - 2017/3/15
Y1 - 2017/3/15
N2 - Global developmental delay (GDD), often accompanied by intellectual disability, seizures and other features is a severe, clinically and genetically highly heterogeneous childhood-onset disorder. In cases where genetic causes have been identified, de novo mutations in neuronally expressed genes are a common scenario. These mutations can be best identified by exome sequencing of parent-offspring trios. De novo mutations in the guanine nucleotide-binding protein, beta 1 (GNB1) gene, encoding the Gb1 subunit of heterotrimeric G proteins, have recently been identified as a novel genetic cause of GDD. Using exome sequencing, we identified 14 different novel variants (2 splice site, 2 frameshift and 10 missense changes) in GNB1 in 16 pediatric patients. One mutation (R96L) was recurrently found in three ethnically diverse families with an autosomal dominant mode of inheritance. Ten variants occurred de novo in the patients. Missense changes were functionally tested for their pathogenicity by assaying the impact on complex formation with Gγ and resultant mutant Gβγ with Gα. Signaling properties of G protein complexes carrying mutant Gβ1 subunits were further analyzed by their ability to couple to dopamine D1R receptors by real-time bioluminescence resonance energy transfer (BRET) assays. These studies revealed altered functionality of the missense mutations R52G, G64V, A92T, P94S, P96L, A106T and D118G but not for L30F, H91R and K337Q. In conclusion, we demonstrate a pathogenic role of de novo and autosomal dominant mutations in GNB1 as a cause of GDD and provide insights how perturbation in heterotrimeric G protein function contributes to the disease.
AB - Global developmental delay (GDD), often accompanied by intellectual disability, seizures and other features is a severe, clinically and genetically highly heterogeneous childhood-onset disorder. In cases where genetic causes have been identified, de novo mutations in neuronally expressed genes are a common scenario. These mutations can be best identified by exome sequencing of parent-offspring trios. De novo mutations in the guanine nucleotide-binding protein, beta 1 (GNB1) gene, encoding the Gb1 subunit of heterotrimeric G proteins, have recently been identified as a novel genetic cause of GDD. Using exome sequencing, we identified 14 different novel variants (2 splice site, 2 frameshift and 10 missense changes) in GNB1 in 16 pediatric patients. One mutation (R96L) was recurrently found in three ethnically diverse families with an autosomal dominant mode of inheritance. Ten variants occurred de novo in the patients. Missense changes were functionally tested for their pathogenicity by assaying the impact on complex formation with Gγ and resultant mutant Gβγ with Gα. Signaling properties of G protein complexes carrying mutant Gβ1 subunits were further analyzed by their ability to couple to dopamine D1R receptors by real-time bioluminescence resonance energy transfer (BRET) assays. These studies revealed altered functionality of the missense mutations R52G, G64V, A92T, P94S, P96L, A106T and D118G but not for L30F, H91R and K337Q. In conclusion, we demonstrate a pathogenic role of de novo and autosomal dominant mutations in GNB1 as a cause of GDD and provide insights how perturbation in heterotrimeric G protein function contributes to the disease.
UR - http://www.scopus.com/inward/record.url?scp=85019063044&partnerID=8YFLogxK
U2 - 10.1093/hmg/ddx018
DO - 10.1093/hmg/ddx018
M3 - Journal articles
C2 - 28087732
AN - SCOPUS:85019063044
SN - 0964-6906
VL - 26
SP - 1078
EP - 1086
JO - Human Molecular Genetics
JF - Human Molecular Genetics
IS - 6
M1 - ddx018
ER -