Non-parametric texture defect detection using Weibull features

Fabian Timm, Erhardt Barth

Abstract

The detection of abnormalities is a very challenging problem in computer vision, especially if these abnormalities must be detected in images of textured surfaces such as textile, stone, or wood. We propose a novel, non-parametric approach for defect detection in textures that only employs two features. We compute the two parameters of a Weibull fit for the distribution of image gradients in local regions. Then, we perform a simple novelty detection algorithm in order to detect arbitrary deviations of the reference texture. Therefore, we evaluate the Euclidean distances of all local patches to a reference point in the Weibull space, where the reference point is determined for each texture image individually. Thus, our approach becomes independent of the particular texture type and also independent of a certain defect type. For performance evaluation we use the highly challenging database provided by Bosch for a contest on industrial optical inspection with different classes of textures and different defect types. By using the Weibull parameters we can detect local deviations of texture images in an unsupervised manner with high accuracy. Compared to existing approaches such as Gabor filters or grey level statistics, our approach is not only powerful, but also very efficient such that it can also be applied for real-time applications.
OriginalspracheEnglisch
TitelImage Processing: Machine Vision Applications IV
Redakteure/-innenPhilip R. Bingham, David Fofi
Seitenumfang12
Band7877
ErscheinungsortSan Francisco, USA
Herausgeber (Verlag)SPIE
Erscheinungsdatum07.02.2011
Seiten7877 - 7877 - 12
ISBN (Print)9780819484147
DOIs
PublikationsstatusVeröffentlicht - 07.02.2011
VeranstaltungIS&T/SPIE ELECTRONIC IMAGING - San Francisco Airport, California, USA / Vereinigte Staaten
Dauer: 23.01.201127.01.2011

Fingerprint

Untersuchen Sie die Forschungsthemen von „Non-parametric texture defect detection using Weibull features“. Zusammen bilden sie einen einzigartigen Fingerprint.

Zitieren