Non-linear regression based feature extraction for connected-word recognition in noise

F. Seide, A. Mertins

Abstract

This paper shows the application of non-linear regression to robust feature extraction for noisy speech recognition. In this approach, a non-linear estimator is used to compute noise invariant features from non-linear combinations of noise contaminated observations. The observations may be short-term subband-energies obtained from a filter bank analysis, cepstral coefficients of linear prediction coefficients. Instead of training the hidden Markov models (HMMs) under various noise conditions, they can be trained with clean data. The results show that this method leads to error rates comparable to those achieved by training in the presence of noise.
OriginalspracheEnglisch
Seiten85-88
Seitenumfang4
DOIs
PublikationsstatusVeröffentlicht - 01.04.1994
VeranstaltungProceedings of IEEE International Conference on Acoustics, Speech and Signal Processing 1994 - Adelaide, Australien
Dauer: 19.04.199422.04.1994

Tagung, Konferenz, Kongress

Tagung, Konferenz, KongressProceedings of IEEE International Conference on Acoustics, Speech and Signal Processing 1994
KurztitelICASSP '94
Land/GebietAustralien
OrtAdelaide
Zeitraum19.04.9422.04.94

Fingerprint

Untersuchen Sie die Forschungsthemen von „Non-linear regression based feature extraction for connected-word recognition in noise“. Zusammen bilden sie einen einzigartigen Fingerprint.

Zitieren