Noise Robust Speaker-Independent Speech Recognition with Invariant-Integration Features Using Power-Bias Subtraction

Florian Müller, Alfred Mertins

Abstract

This paper presents new results about the robustness of invariant-integration features (IIF) in noisy conditions. Furthermore, it is shown that a feature-enhancement method known as "powerbias subtraction: for noisy conditions can be combined with the IIF approach to improve its performance in noisy environments while keeping the robustness of the IIFs to mismatching vocal-tract length training-testing conditions. Results of experiments with training on clean speech only as well as experiments with matched-condition training are presented.
OriginalspracheEnglisch
TitelProc. Interspeech-2011
Seitenumfang4
ErscheinungsortFlorence, Italy
Herausgeber (Verlag) International Speech Communication Association (ISCA)
Erscheinungsdatum01.08.2011
Seiten1677-1680
PublikationsstatusVeröffentlicht - 01.08.2011
Veranstaltung12th Annual Conference of the International Speech Communication Association - Florence, Italien
Dauer: 27.08.201131.08.2011
Konferenznummer: 92405

Fingerprint

Untersuchen Sie die Forschungsthemen von „Noise Robust Speaker-Independent Speech Recognition with Invariant-Integration Features Using Power-Bias Subtraction“. Zusammen bilden sie einen einzigartigen Fingerprint.

Zitieren