NetFAN - A Structured Adaptive Fuzzy Approach

Olaf Huwendiek, Werner Brockmann

Abstract

Adaptive fuzzy systems are useful universal function approximators. But they suffer from the curse of dimensionality. I.e. the number of parameters, which have to be tuned, increases drastically if the number of input variables increases. This has the effect that memory and computational demands increase also drastically, and more stringently fitting problems may occur if the number of training data is limited. The approach presented in this paper addresses both problems by decomposing the functional mapping into a Network of Fuzzy Adaptive Nodes (NetFAN). This decomposition reduces the number of parameters as well as memory and computational demands. Some first investigations outline the basic characteristics of the NetFAN-approach.

OriginalspracheEnglisch
TitelProceedings of International Conference on Neural Networks (ICNN'96)
Seitenumfang6
Herausgeber (Verlag)IEEE
Erscheinungsdatum01.01.1996
Seiten1079-1084
ISBN (Print) 0-7803-3210-5
DOIs
PublikationsstatusVeröffentlicht - 01.01.1996
VeranstaltungProceedings of the 1996 IEEE International Conference on Neural Networks - Washington, USA / Vereinigte Staaten
Dauer: 03.06.199606.06.1996
Konferenznummer: 45420

Fingerprint

Untersuchen Sie die Forschungsthemen von „NetFAN - A Structured Adaptive Fuzzy Approach“. Zusammen bilden sie einen einzigartigen Fingerprint.

Zitieren