Mutations in GNAL: A novel cause of craniocervical dystonia

Kishore R. Kumar, Katja Lohmann, Ikuo Masuho, Ryosuke Miyamoto, Andreas Ferbert, Thora Lohnau, Meike Kasten, Johann Hagenah, Norbert Brüggemann, Julia Graf, Alexander Münchau, Vladimir S. Kostic, Carolyn M. Sue, Aloysius R. Domingo, Raymond L. Rosales, Lilian V. Lee, Karen Grütz, Ana Westenberger, Youhei Mukai, Toshitaka KawaraiRyuji Kaji, Christine Klein*, Kirill A. Martemyanov, Alexander Schmidt

*Korrespondierende/r Autor/-in für diese Arbeit
30 Zitate (Scopus)


IMPORTANCE: Mutations in the GNAL gene have recently been shown to cause primary torsion dystonia. The GNAL-encoded protein (Gαolf) is important for dopamine D1receptor function and odorant signal transduction.We sequenced all 12 exons of GNAL in 461 patients from Germany, Serbia, and Japan, including 318 patients with dystonia (190 with cervical dystonia), 51 with hyposmia and Parkinson disease, and 92 with tardive dyskinesia or acute dystonic reactions. OBSERVATIONS: We identified the following two novel heterozygous putative mutations in GNAL: p.Gly213Ser in a German patient and p.Ala353Thr in a Japanese patient. These variants were predicted to be pathogenic in silico,were absent in ethnically matched control individuals, and impaired Gαolfcoupling to D1receptors in a bioluminescence energy transfer (BRET) assay. Two additional variants appeared to be benign because they behaved like wild-type samples in the BRET assay (p.Ala311Thr) or were detected in ethnically matched controls (p.Thr92Ala). Both patients with likely pathogenic mutations had craniocervical dystonia with onset in the fifth decade of life. No pathogenic mutations were detected in the patients with hyposmia and Parkinson disease, tardive dyskinesias, or acute dystonic reactions. CONCLUSIONS AND RELEVANCE: Mutations in GNAL can cause craniocervical dystonia in different ethnicities. The BRET assaymay be a useful tool to support the pathogenicity of identified variants in the GNAL gene.
ZeitschriftJAMA Neurology
Seiten (von - bis)490-494
PublikationsstatusVeröffentlicht - 01.04.2014


Untersuchen Sie die Forschungsthemen von „Mutations in GNAL: A novel cause of craniocervical dystonia“. Zusammen bilden sie einen einzigartigen Fingerprint.