Multispectral Image Registration Based on Local Canonical Correlation Analysis

Mattias P. Heinrich, Bartlomiej W. Papiez, J. Schnabel, Heinz Handels

Abstract

Medical scans are today routinely acquired using multiple sequences or contrast settings, resulting in multispectral data. For the automatic analysis of this data, the evaluation of multispectral similarity is essential. So far, few concepts have been proposed to deal in a principled way with images containing multiple channels. Here, we present a new approach based on a well known statistical technique: canonical correlation analysis (CCA). CCA finds a mapping of two multidimensional variables into two new bases, which best represent the true underlying relations of the signals. In contrast to previously used metrics, it is therefore able to find new correlations based on linear combinations of multiple channels. We extend this concept to efficiently model local canonical correlation (LCCA) between image patches. This novel, more general similarity metric can be applied to images with an arbitrary number of channels. The most important property of LCCA is its invariance to affine transformations of variables. When used on local histograms, LCCA can also deal with multimodal similarity. We demonstrate the performance of our concept on challenging clinical multispectral datasets.
OriginalspracheEnglisch
TitelMedical Image Computing and Computer-Assisted Intervention – MICCAI 2014
Redakteure/-innenPolina Golland, Nobuhiko Hata, Christian Barillot, Joachim Hornegger, Robert Howe
Seitenumfang8
Herausgeber (Verlag)Springer Vieweg, Berlin Heidelberg
Erscheinungsdatum09.2014
Seiten202-209
ISBN (Print)978-3-319-10403-4
ISBN (elektronisch)978-3-319-10404-1
DOIs
PublikationsstatusVeröffentlicht - 09.2014
VeranstaltungMICCAI Workshop Image Guided Radiation Therapy, 17th International Conference on Medical Image Computing and Computer-Assisted Intervention - MICCAI 2014
- Boston, USA / Vereinigte Staaten
Dauer: 14.09.201418.09.2014

Fingerprint

Untersuchen Sie die Forschungsthemen von „Multispectral Image Registration Based on Local Canonical Correlation Analysis“. Zusammen bilden sie einen einzigartigen Fingerprint.

Zitieren