Multiple feature extraction for early Parkinson risk assessment based on transcranial sonography image

L. Chen, G. Seidel, A. Mertins

Abstract

Transcranial sonography (TCS) is a new tool for the diagnosis of Parkinson's disease (PD) at a very early state. The TCS image of mesencephalon shows a distinct hyperechogenic pattern in about 90% PD patients. This pattern is usually manually segmented and the substantia nigra (SN) region can be used as an early PD indicator. However this method is based on manual evaluation of examined images. The extraction of multiple features from TCS images characterizing the half mesencephalon morphology and structure can be used to validate the observer-independent PD indicator. We propose hybrid feature extraction methods which includes statistical, geometrical and texture features for the early PD risk assessment. These features are tested with support vector machines (SVMs). Furthermore five features are selected with the sequential feature selection methods. The results show that the correct rate of the classification with these five features is reaching 96%.
OriginalspracheEnglisch
Titel2010 IEEE International Conference on Image Processing
Seitenumfang4
ErscheinungsortHong Kong, Hong Kong
Herausgeber (Verlag)IEEE
Erscheinungsdatum01.09.2010
Seiten2277-2280
Aufsatznummer5654216
ISBN (Print)978-1-4244-7992-4
ISBN (elektronisch)978-1-4244-7994-8
DOIs
PublikationsstatusVeröffentlicht - 01.09.2010
Veranstaltung2010 17th IEEE International Conference on Image Processing - Hong Kong, Hong Kong
Dauer: 26.09.201029.09.2010
Konferenznummer: 83260

Fingerprint

Untersuchen Sie die Forschungsthemen von „Multiple feature extraction for early Parkinson risk assessment based on transcranial sonography image“. Zusammen bilden sie einen einzigartigen Fingerprint.

Zitieren