Abstract
Currently generative adversarial networks (GANs) are rarely applied to medical images of large sizes, especially 3D volumes, due to their large computational demand. We propose a novel multi-scale patch-based GAN approach to generate large high resolution 2D and 3D images. Our key idea is to first learn a low-resolution version of the image and then generate patches of successively growing resolutions conditioned on previous scales. In a domain translation use-case scenario, 3D thorax CTs of size 512 3 and thorax X-rays of size 2048 2 are generated and we show that, due to the constant GPU memory demand of our method, arbitrarily large images of high resolution can be generated. Moreover, compared to common patch-based approaches, our multi-resolution scheme enables better image quality and prevents patch artifacts.
Originalsprache | Englisch |
---|---|
Titel | MICCAI 2019: Medical Image Computing and Computer Assisted Intervention – MICCAI 2019 |
Redakteure/-innen | Dinggang Shen, Tianming Liu, Terry M. Peters, Lawrence H. Staib, Caroline Essert, Sean Zhou, Pew-Thian Yap, Ali Khan |
Seitenumfang | 9 |
Band | 11769 |
Erscheinungsort | Cham |
Herausgeber (Verlag) | Springer Verlag |
Erscheinungsdatum | 10.10.2019 |
Seiten | 112-120 |
ISBN (Print) | 978-3-030-32225-0 |
ISBN (elektronisch) | 978-3-030-32226-7 |
DOIs | |
Publikationsstatus | Veröffentlicht - 10.10.2019 |
Veranstaltung | 22nd International Conference on Medical Image Computing and Computer-Assisted Intervention - Shenzhen, China Dauer: 13.10.2019 → 17.10.2019 Konferenznummer: 232939 |
Strategische Forschungsbereiche und Zentren
- Forschungsschwerpunkt: Biomedizintechnik