Multi-Resolution Image Segmentation with Border Smoothness for Scalable Object-based Wavelet Coding

A. Mertins, F. A. Tab, G. Naghdy

Abstract

This paper introduces a multiresolution image segmentation algorithm for scalable object-based wavelet coding applications. This algorithm is based on discrete wavelet transform and multiresolution Markov random field (MMRF) modelling. The major contribution of this work is to add spatial scalability and border smoothness in the segmentation algorithm usable for object-based wavelet coding algorithm. To optimize the segmentation/extraction of objects/regions of interest in all scales of the wavelet pyramid, with scalability constraint, a multiresolution analysis is incorporated into the objective function of MMRF segmentation algorithm. The proposed algorithm improves border smoothness in all regions, particularly in lower resolutions. In addition to scalability between objects/regions in different levels, the proposed algorithm outperforms the standard multiresolution segmentation algorithms, in both objective and subjective tests, in yielding an effective segmentation that supports scalable object-based wavelet coding.
OriginalspracheEnglisch
Seiten977-986
Seitenumfang10
PublikationsstatusVeröffentlicht - 01.12.2003
Veranstaltung7th International Conference on Digital Image Computing: Techniques and Applications - Macquarie University, Sydney, Australien
Dauer: 10.12.200312.12.2003

Tagung, Konferenz, Kongress

Tagung, Konferenz, Kongress7th International Conference on Digital Image Computing: Techniques and Applications
KurztitelDICTA 2003
Land/GebietAustralien
OrtSydney
Zeitraum10.12.0312.12.03

Fingerprint

Untersuchen Sie die Forschungsthemen von „Multi-Resolution Image Segmentation with Border Smoothness for Scalable Object-based Wavelet Coding“. Zusammen bilden sie einen einzigartigen Fingerprint.

Zitieren