Multi-modal respiratory motion prediction using sequential forward selection method

Robert Dürichen, Tobias Wissel, Floris Ernst, Achim Schweikard

Abstract

In robotic radiotherapy, systematic latencies have to be compensated by prediction of external optical surrogates. We investigate possibilities to increase the prediction accuracy using multi-modal sensors. The measurement setup includes position, acceleration, strain and flow sensors. To select the most relevant and least redundant information from the sensors and to limit the size of the feature set, a sequential forward selection (SFS) method is proposed. The method is evaluated with three prediction algorithms – the least means square (LMS) algorithm, a wavelet-based LMS algorithm (wLMS) and an algorithm using relevance vector machines (RVM). We show that multi-modal inputs can easily be integrated into general algorithms. The relative root mean square error (RMSrel) of the best predictor, RVM, could be decreased from 60.5 % to 48.4 Furthermore, the results indicate that more complex algorithms can efficiently use different modalities like acceleration which are less correlated with the optical sensor to be predicted.
OriginalspracheEnglisch
Titel12. Jahrestagung der Deutschen Gesellschaft für Computer- und Roboterassistierte Chirurgie (CURAC)
Seitenumfang5
Band1477
Herausgeber (Verlag)CEUR-WS.org
Erscheinungsdatum01.11.2013
Seiten183-187
PublikationsstatusVeröffentlicht - 01.11.2013
VeranstaltungAnnual Meeting of CURAC (Computer-und Roboterassistierte Chirurgie) 2013 - Innsbruck, Österreich
Dauer: 28.11.201330.11.2013

Fingerprint

Untersuchen Sie die Forschungsthemen von „Multi-modal respiratory motion prediction using sequential forward selection method“. Zusammen bilden sie einen einzigartigen Fingerprint.

Zitieren