Multi-label Learning with a Cone-Based Geometric Model

Mena Leemhuis*, Özgür L. Özçep, Diedrich Wolter

*Korrespondierende/r Autor/-in für diese Arbeit

Abstract

Recent approaches for knowledge-graph embeddings aim at connecting quantitative data structures used in machine learning to the qualitative structures of logics. Such embeddings are of a hybrid nature, they are data models that also exhibit conceptual structures inherent to logics. One motivation to investigate embeddings is to design conceptually adequate machine learning (ML) algorithms. This paper investigates a new approach to embedding ontologies into geometric models that interpret concepts by closed convex cones. As a proof of concept this cone-based embedding was implemented in a ML algorithm for weak supervised multi-label learning. The system was tested with the gene ontology and showed a performance similar to comparable approaches, but with the advantage of exhibiting the conceptual structure underlying the data.

OriginalspracheEnglisch
TitelICCS 2020: Ontologies and Concepts in Mind and Machine
Redakteure/-innenMehwish Alam, Tanya Braun, Bruno Yun
Seitenumfang9
Band12277 LNAI
Herausgeber (Verlag)Springer, Cham
Erscheinungsdatum10.09.2020
Seiten177-185
ISBN (Print)978-3-030-57854-1
ISBN (elektronisch)978-3-030-57855-8
DOIs
PublikationsstatusVeröffentlicht - 10.09.2020
Veranstaltung25th International Conference on Conceptual Structures - Bolzano, Italien
Dauer: 18.09.202020.09.2020
Konferenznummer: 245219

Strategische Forschungsbereiche und Zentren

  • Zentren: Zentrum für Künstliche Intelligenz Lübeck (ZKIL)
  • Querschnittsbereich: Intelligente Systeme

Fingerprint

Untersuchen Sie die Forschungsthemen von „Multi-label Learning with a Cone-Based Geometric Model“. Zusammen bilden sie einen einzigartigen Fingerprint.

Zitieren