MPC for linear parameter-varying systems in input-output representation

Jurre Hanema, Roland Toth, Mircea Lazar, Hossam S. Abbas

Abstract

In this paper, we propose a method for model predictive control of linear parameter-varying (LPV) systems described in an input-output (IO) representation and subject to input- and output constraints. By assuming exact knowledge of the future trajectory of the scheduling variable, the on-line computations reduce to the solution of a nominal predictive control problem. An incremental non-minimal state-space representation is used as a prediction model, giving a controller with integral action suitable for tracking piecewise-constant reference signals. Closed-loop asymptotic stability is guaranteed by a terminal cost and terminal set constraint, and the computation of an ellipsoidal terminal set is discussed. Numerical examples demonstrate the properties of the proposed approach. When exact future knowledge of the scheduling variable is not available, we argue and show that good practical performance can be obtained by a scheduling prediction strategy.

OriginalspracheEnglisch
Titel 2016 IEEE International Symposium on Intelligent Control (ISIC)
Seitenumfang6
Band2016-September
Herausgeber (Verlag)IEEE
Erscheinungsdatum29.09.2016
Seiten1-6
Aufsatznummer7579987
ISBN (Print)978-1-5090-2052-2
ISBN (elektronisch)978-1-5090-2051-5
DOIs
PublikationsstatusVeröffentlicht - 29.09.2016
Veranstaltung2016 IEEE International Symposium on Intelligent Control
- Buenos Aires, Argentinien
Dauer: 19.09.201622.09.2016
Konferenznummer: 124203

Strategische Forschungsbereiche und Zentren

  • Forschungsschwerpunkt: Biomedizintechnik

Fingerprint

Untersuchen Sie die Forschungsthemen von „MPC for linear parameter-varying systems in input-output representation“. Zusammen bilden sie einen einzigartigen Fingerprint.

Zitieren