mlVIRNET: Multilevel Variational Image Registration Network

Alessa Hering*, Bram van Ginneken, Stefan Heldmann

*Korrespondierende/r Autor/-in für diese Arbeit

Abstract

We present a novel multilevel approach for deep learning based image registration. Recently published deep learning based registration methods have shown promising results for a wide range of tasks. However, these algorithms are still limited to relatively small deformations. Our method addresses this shortcoming by introducing a multilevel framework, which computes deformation fields on different scales, similar to conventional methods. Thereby, a coarse-level alignment is obtained first, which is subsequently improved on finer levels. We demonstrate our method on the complex task of inhale-to-exhale lung registration. We show that the use of a deep learning multilevel approach leads to significantly better registration results.

OriginalspracheEnglisch
TitelMICCAI 2019: Medical Image Computing and Computer Assisted Intervention – MICCAI 2019
Redakteure/-innenDinggang Shen, Tianming Liu, Terry M. Peters, Lawrence H. Staib, Caroline Essert, Sean Zhou, Pew-Thian Yap, Ali Khan
Seitenumfang9
Band11769 LNCS
Herausgeber (Verlag)Springer, Cham
Erscheinungsdatum10.10.2019
Seiten257-265
ISBN (Print)978-3-030-32225-0
ISBN (elektronisch)978-3-030-32226-7
DOIs
PublikationsstatusVeröffentlicht - 10.10.2019
Veranstaltung22nd International Conference on Medical Image Computing and Computer-Assisted Intervention - Shenzhen, China
Dauer: 13.10.201917.10.2019
Konferenznummer: 232939

Fingerprint

Untersuchen Sie die Forschungsthemen von „mlVIRNET: Multilevel Variational Image Registration Network“. Zusammen bilden sie einen einzigartigen Fingerprint.

Zitieren