Metabolic plasticity in CLL: Adaptation to the hypoxic niche

K. M. Koczula, Christian Ludwig, R. Hayden, L. Cronin, G. Pratt, H. Parry, D. Tennant, M. Drayson, C. M. Bunce, F. L. Khanim, U. L. Gunther*

*Korrespondierende/r Autor/-in für diese Arbeit
36 Zitate (Scopus)


Metabolic transformation in cancer is increasingly well understood. However, little is known about the metabolic responses of cancer cells that permit their survival in different microenvironments. We have used a nuclear magnetic resonance based approach to monitor metabolism in living primary chronic lymphoid leukemia (CLL) cells and to interrogate their real-time metabolic responses to hypoxia. Our studies demonstrate considerable metabolic plasticity in CLL cells. Despite being in oxygenated blood, circulating CLL cells are primed for hypoxia as measured by constitutively low level hypoxia-inducible factor (HIF-1α) activity and modest lactate production from glycolysis. Upon entry to hypoxia we observed rapid upregulation of metabolic rates. CLL cells that had adapted to hypoxia returned to the 'primed' state when re-oxygenated and again showed the same adaptive response upon secondary exposure to hypoxia. We also observed HIF-1α independent differential utilization of pyruvate in oxygenated and hypoxic conditions. When oxygenated, CLL cells released pyruvate, but in hypoxia imported pyruvate to protect against hypoxia-associated oxidative stress. Finally, we identified a marked association of slower resting glucose and glutamine consumption, and lower alanine and lactate production with Binet A0 stage samples indicating that CLL may be divided into tumors with higher and lower metabolic states that reflect disease stage.

Seiten (von - bis)65-73
PublikationsstatusVeröffentlicht - 01.01.2016

Strategische Forschungsbereiche und Zentren

  • Forschungsschwerpunkt: Infektion und Entzündung - Zentrum für Infektions- und Entzündungsforschung Lübeck (ZIEL)


Untersuchen Sie die Forschungsthemen von „Metabolic plasticity in CLL: Adaptation to the hypoxic niche“. Zusammen bilden sie einen einzigartigen Fingerprint.