Memory Efficient LDDMM for Lung CT

Thomas Polzin*, Marc Niethammer, Mattias P. Heinrich, Heinz Handels, Jan Modersitzki

*Korrespondierende/r Autor/-in für diese Arbeit
15 Zitate (Scopus)

Abstract

In this paper a novel Large Deformation Diffeomorphic Metric Mapping (LDDMM) scheme is presented which has significantly lower computational and memory demands than standard LDDMM but achieves the same accuracy. We exploit the smoothness of velocities and transformations by using a coarser discretization compared to the image resolution. This reduces required memory and accelerates numerical optimization as well as solution of transport equations. Accuracy is essentially unchanged as the mismatch of transformed moving and fixed image is incorporated into the model at high resolution. Reductions in memory consumption and runtime are demonstrated for registration of lung CT images. State-of-the-art accuracy is shown for the challenging DIRLab chronic obstructive pulmonary disease (COPD) lung CT data sets obtaining a mean landmark distance after registration of 1.03mm and the best average results so far.

OriginalspracheEnglisch
TitelMedical Image Computing and Computer-Assisted Intervention - MICCAI 2016 - 19th International Conference, Proceedings
Redakteure/-innenLeo Joskowicz, Mert R. Sabuncu, William Wells, Gozde Unal, Sebastian Ourselin
Seitenumfang9
Herausgeber (Verlag)Springer International Publishing
Erscheinungsdatum02.10.2016
Seiten28-36
ISBN (Print)978-3-319-46725-2
ISBN (elektronisch)978-3-319-46726-9
DOIs
PublikationsstatusVeröffentlicht - 02.10.2016
Veranstaltung19th International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI) 2016
- Athens, Griechenland
Dauer: 17.10.201621.10.2016
http://miccai2016.org/en/

Fingerprint

Untersuchen Sie die Forschungsthemen von „Memory Efficient LDDMM for Lung CT“. Zusammen bilden sie einen einzigartigen Fingerprint.

Zitieren