Abstract
Bodlaender's Theorem states that for every k there is a linear-time algorithm that decides whether an input graph has tree width k and, if so, computes a width-k tree composition. Courcelle's Theorem builds on Bodlaender's Theorem and states that for every monadic second-order formula φ and for every k there is a linear-time algorithm that decides whether a given logical structure A of tree width at most k satisfies φ. We prove that both theorems still hold when "linear time" is replaced by "logarithmic space." The transfer of the powerful theoretical framework of monadic second-order logic and bounded tree width to logarithmic space allows us to settle a number of both old and recent open problems in the log space world.
Originalsprache | Englisch |
---|---|
Titel | 2010 IEEE 51st Annual Symposium on Foundations of Computer Science |
Seitenumfang | 10 |
Herausgeber (Verlag) | IEEE |
Erscheinungsdatum | 17.12.2010 |
Seiten | 143-152 |
ISBN (Print) | 978-1-4244-8525-3 |
DOIs | |
Publikationsstatus | Veröffentlicht - 17.12.2010 |
Veranstaltung | 2010 IEEE 51st Annual Symposium on Foundations of Computer Science - Las Vegas, USA / Vereinigte Staaten Dauer: 23.10.2010 → 26.10.2010 |