Local Linear Neural Networks Based on Principal Component Analysis

L. Ramrath, M. Münchhof, R. Isermann

Abstract

A new method for the estimation of process parameters based on the Principal Component Analysis is developed. The estimator yields optimal estimation results in the case of Errors In Variables (EIV) problems which are characterized by corrupted measurements of input and output signals. As the residual generation in fault detection methods often feature EIV characteristics, the estimator can be used to identify linear models for residual calculation. To overcome the limitations on linear models, the developed estimator is integrated into the LOLIMOT approach which is able to identify nonlinear processes. The estimator is used as an alternative to the standard Least Squares estimator to identify the parameters of the local linear models. Comparative results show the better suitability of the developed estimator for the residual generation in EIV-setups.

OriginalspracheEnglisch
Titel2006 American Control Conference
Seitenumfang6
Herausgeber (Verlag)IEEE
Erscheinungsdatum01.12.2006
Seiten3050-3055
Aufsatznummer1657185
ISBN (Print)1-4244-0209-3
ISBN (elektronisch)1-4244-0210-7
DOIs
PublikationsstatusVeröffentlicht - 01.12.2006
Veranstaltung2006 American Control Conference - Minneapolis, USA / Vereinigte Staaten
Dauer: 14.06.200616.06.2006
Konferenznummer: 69440

Fingerprint

Untersuchen Sie die Forschungsthemen von „Local Linear Neural Networks Based on Principal Component Analysis“. Zusammen bilden sie einen einzigartigen Fingerprint.

Zitieren