Abstract
Lifted algorithms use representatives for groups of indistinguishable objects to efficiently perform inference. Standard lifted algorithms like first-order variable elimination or first-order knowledge compilation, compute answers to marginal queries of single random variables or events in a lifted way using representatives. But, queries containing a set of indistinguishable random variables may lead to groundings, something that lifting tries to avoid. This paper presents parameterised queries as a means to avoid groundings, applying the lifting idea to queries. Parameterised queries enable lifted algorithms to compute answers faster, while compactly representing queries and answers.
Originalsprache | Englisch |
---|---|
Titel | Frontiers in Artificial Intelligence and Applications |
Redakteure/-innen | Giuseppe De Giacomo , Alejandro Catala , Bistra Dilkina , Michela Milano , Senén Barro , Alberto Bugarín , Jérôme Lang |
Seitenumfang | 22 |
Band | 325 |
Herausgeber (Verlag) | IOS Press |
Erscheinungsdatum | 24.08.2020 |
Seiten | 2891 - 2892 |
ISBN (Print) | 978-1-64368-100-9 |
ISBN (elektronisch) | 978-1-64368-101-6 |
DOIs | |
Publikationsstatus | Veröffentlicht - 24.08.2020 |
Veranstaltung | 24th European Conference on Artificial Intelligence - Online Streaming , Santiago de Compostela, Spanien Dauer: 29.08.2020 → 08.09.2020 Konferenznummer: 162625 |
Strategische Forschungsbereiche und Zentren
- Zentren: Zentrum für Künstliche Intelligenz Lübeck (ZKIL)
- Querschnittsbereich: Intelligente Systeme