Lifted Junction Tree Algorithm

Tanya Braun, Ralf Möller

Abstract

We look at probabilistic first-order formalisms where the domain objects are known. In these formalisms, the standard approach for inference is lifted variable elimination. To benefit from the advantages of the junction tree algorithm for inference in the first-order setting, we transfer the idea of lifting to the junction tree algorithm.

Our lifted junction tree algorithm aims at reducing computations by introducing first-order junction trees that compactly represent symmetries. First experiments show that we speed up the computation time compared to the propositional version. When querying for multiple marginals, the lifted junction tree algorithm performs better than using lifted VE to infer each marginal individually.
OriginalspracheEnglisch
TitelKI 2016: Advances in Artificial Intelligence
Redakteure/-innenGerhard Friedrich, Malte Helmert, Franz Wotawa
Seitenumfang13
Band9904
ErscheinungsortCham
Herausgeber (Verlag)Springer International Publishing
Erscheinungsdatum08.09.2016
Seiten30-42
ISBN (Print)978-3-319-46072-7
ISBN (elektronisch)978-3-319-46073-4
DOIs
PublikationsstatusVeröffentlicht - 08.09.2016
Veranstaltung39th German Conference on Artificial Intelligence - Klagenfurt, Österreich
Dauer: 26.09.201630.09.2016
Konferenznummer: 181639

DFG-Fachsystematik

  • 4.43-01 Theoretische Informatik

Fingerprint

Untersuchen Sie die Forschungsthemen von „Lifted Junction Tree Algorithm“. Zusammen bilden sie einen einzigartigen Fingerprint.

Zitieren