Learning Sparse Codes for Image Reconstruction

Kai Labusch, Thomas Martinetz

Abstract

We propose a new algorithm for the design of overcomplete dictionaries for sparse coding that generalizes the Sparse Coding Neural Gas (SCNG) algorithm such that it is not bound to a particular approximation method for the coecients of the dictionary elements. In an application to image reconstruction, a dictionary that has been learned using this algorithm outperforms a dictionary that has been obtained from the widely-used K-SVD algorithm, an overcomplete Haar-wavelet dictionary and an overcomplete discrete cosine transformation (DCT).
OriginalspracheEnglisch
TitelProceedings of the 18th European Symposium on Artificial Neural Networks
Redakteure/-innenMichel Verleysen
Seitenumfang6
Herausgeber (Verlag)ESANN
Erscheinungsdatum04.2010
Seiten241-246
ISBN (Print)2-930307-10-2
PublikationsstatusVeröffentlicht - 04.2010
Veranstaltung18th European Symposium on Artificial Neural Networks - Bruges, Belgien
Dauer: 28.04.201030.04.2010

Fingerprint

Untersuchen Sie die Forschungsthemen von „Learning Sparse Codes for Image Reconstruction“. Zusammen bilden sie einen einzigartigen Fingerprint.

Zitieren