TY - JOUR
T1 - Learning Laparoscopic Surgery Skills With a 4K Ultra-High Definition 2D vs a Three-Dimensional HD Laparoscopic System
T2 - Results From a Prospective Randomized Trial
AU - Thomaschewski, Michael
AU - Jürgens, Thorsten
AU - Keck, Tobias
AU - Laubert, Tilman
AU - Benecke, Claudia
PY - 2021
Y1 - 2021
N2 - Background. In minimally invasive surgery (MIS), the loss of stereoscopic depth perception in a two-dimensional (2D) representation is most challenging. Recently introduced 4K ultrahigh definition (UHD) 2D optical systems could potentially facilitate the learning and use of compensation mechanisms for the loss of depth perception. However, the role of the new 4K technology against three dimensional (3D) in learning and implementation of MIS remains unknown. The aim of this trial was to determine the influence of 4K UHD 2D vs 3D HD representation on the acquisition of MIS skills. Methods. This was a prospective randomized study involving 62 MIS-inexperienced study participants. We compared a laparoscopic 4K UHD 2D (system A) vs a laparoscopic 3D HD system (system B) for differences in learning MIS skills using the Lübeck Toolbox (LTB) video box trainer. We evaluated participants' performance regarding the repetitions required to reach the goal of each LTB task. Results. Comparing systems A and B, participants using the laparoscopic 3D system required fewer repetitions to achieve goals of LTB tasks No. 1 (P = .0048) and No. 3 (P = .0014). In contrast, for LTB tasks No. 2 and No. 4, no significant difference could be determined between both groups. Conclusion. Our results indicated that MIS basic skills can be learned quicker using a 3D HD system vs a 4K UHD 2D system. However, for MIS tasks in confined spaces, the learning speed with 4K UHD 2D imaging seems to be comparable to a 3D HD system.
AB - Background. In minimally invasive surgery (MIS), the loss of stereoscopic depth perception in a two-dimensional (2D) representation is most challenging. Recently introduced 4K ultrahigh definition (UHD) 2D optical systems could potentially facilitate the learning and use of compensation mechanisms for the loss of depth perception. However, the role of the new 4K technology against three dimensional (3D) in learning and implementation of MIS remains unknown. The aim of this trial was to determine the influence of 4K UHD 2D vs 3D HD representation on the acquisition of MIS skills. Methods. This was a prospective randomized study involving 62 MIS-inexperienced study participants. We compared a laparoscopic 4K UHD 2D (system A) vs a laparoscopic 3D HD system (system B) for differences in learning MIS skills using the Lübeck Toolbox (LTB) video box trainer. We evaluated participants' performance regarding the repetitions required to reach the goal of each LTB task. Results. Comparing systems A and B, participants using the laparoscopic 3D system required fewer repetitions to achieve goals of LTB tasks No. 1 (P = .0048) and No. 3 (P = .0014). In contrast, for LTB tasks No. 2 and No. 4, no significant difference could be determined between both groups. Conclusion. Our results indicated that MIS basic skills can be learned quicker using a 3D HD system vs a 4K UHD 2D system. However, for MIS tasks in confined spaces, the learning speed with 4K UHD 2D imaging seems to be comparable to a 3D HD system.
U2 - 10.1177/1553350621991224
DO - 10.1177/1553350621991224
M3 - Journal articles
C2 - 33530845
SN - 1553-3506
VL - 28
SP - 760
EP - 767
JO - Surgical Innovation
JF - Surgical Innovation
IS - 6
ER -