Learning from Pairwise Marginal Independencies

Johannes Textor, Alexander Idelberger, Maciej Liskiewicz

Abstract

We consider graphs that represent pairwise marginal independencies amongst a set of variables (for instance, the zero entries of a covari-ance matrix for normal data). We characterize the directed acyclic graphs (DAGs) that faithfully explain a given set of independencies, and derive algorithms to efficiently enumerate such structures. Our results map out the space of faithful causal models for a given set of pairwise marginal independence relations. This allows us to show the extent to which causal inference is possible without using conditional independence tests.

OriginalspracheEnglisch
TitelThe 31st Conference on Uncertainty in Artificial Intelligence (UAI 2015)
Seitenumfang10
Herausgeber (Verlag)AUAI Press
Erscheinungsdatum02.08.2015
Seiten882-891
ISBN (Print)978-0-9966431-0-8
PublikationsstatusVeröffentlicht - 02.08.2015
VeranstaltungThe 31st Conference on Uncertainty in Artificial Intelligence (UAI'15) - Amsterdam, Niederlande
Dauer: 12.07.201512.07.2015
http://auai.org/uai2015/

Fingerprint

Untersuchen Sie die Forschungsthemen von „Learning from Pairwise Marginal Independencies“. Zusammen bilden sie einen einzigartigen Fingerprint.

Zitieren