Learning a Subclass of Regular Patterns in Polynomial Time

John Case, Sanjay Jain, Rüdiger Reischuk, Frank Stephan, Thomas Zeugmann

Abstract

Presented is an algorithm (for learning a subclass of erasing regular pattern languages) which can be made to run with arbitrarily high probability of success on extended regular languages generated by patterns π of the form x0α1x1...αmxm for unknown m but known c, from number of examples polynomial in m (and exponential in c), where x0,..., xm are variables and where α1,..., αm are each strings of constants or terminals of length c. This assumes that the algorithm randomly draws samples with natural and plausible assumptions on the distribution. The more general looking case of extended regular patterns which alternate between a variable and fixed length constant strings, beginning and ending with either a variable or a constant string is similarly handled.

OriginalspracheEnglisch
TitelALT 2003: Algorithmic Learning Theory
Seitenumfang13
Band2842
Herausgeber (Verlag)Springer Berlin Heidelberg
Erscheinungsdatum01.01.2003
Seiten234-246
ISBN (Print)978-3-540-20291-2
ISBN (elektronisch)978-3-540-39624-6
DOIs
PublikationsstatusVeröffentlicht - 01.01.2003
Veranstaltung14th International Conference on Algorithmic Learning Theory
- Sapporo, Japan
Dauer: 17.10.200319.10.2003
Konferenznummer: 133919

Fingerprint

Untersuchen Sie die Forschungsthemen von „Learning a Subclass of Regular Patterns in Polynomial Time“. Zusammen bilden sie einen einzigartigen Fingerprint.
  • Robuste Lernverfahren und Datenkomprimierung

    Reischuk, R. (Projektleiter*in (PI))

    01.01.0431.12.08

    Projekt: DFG-ProjekteDFG Einzelförderungen (Sachbeihilfen)

Zitieren