Label Tree Embeddings for Acoustic Scene Classification

Huy Phan, Lars Hertel, Marco Maass, Philipp Koch, Alfred Mertins

Abstract

We present in this paper an efficient approach for acoustic scene classification by exploring the structure of class labels. Given a set of class labels, a category taxonomy is automatically learned by collectively optimizing a clustering of the labels into multiple meta-classes in a tree structure. An acoustic scene instance is then embedded into a low-dimensional feature representation which consists of the likelihoods that it belongs to the meta-classes. We demonstrate state-of-the-art results on two different datasets for the acoustic scene classification task, including the DCASE 2013 and LITIS Rouen datasets.
OriginalspracheEnglisch
TitelProceedings of the 2016 ACM on Multimedia Conference
Seitenumfang5
ErscheinungsortNew York, NY, USA
Herausgeber (Verlag)ACM
Erscheinungsdatum01.10.2016
Seiten486-490
ISBN (Print)978-1-4503-3603-1
DOIs
PublikationsstatusVeröffentlicht - 01.10.2016
Veranstaltung24th ACM Multimedia Conference - Amsterdam, Niederlande
Dauer: 15.10.201619.10.2016
Konferenznummer: 124107

Fingerprint

Untersuchen Sie die Forschungsthemen von „Label Tree Embeddings for Acoustic Scene Classification“. Zusammen bilden sie einen einzigartigen Fingerprint.

Zitieren