Abstract
We present in this paper an efficient approach for acoustic scene classification by exploring the structure of class labels. Given a set of class labels, a category taxonomy is automatically learned by collectively optimizing a clustering of the labels into multiple meta-classes in a tree structure. An acoustic scene instance is then embedded into a low-dimensional feature representation which consists of the likelihoods that it belongs to the meta-classes. We demonstrate state-of-the-art results on two different datasets for the acoustic scene classification task, including the DCASE 2013 and LITIS Rouen datasets.
Originalsprache | Englisch |
---|---|
Titel | Proceedings of the 2016 ACM on Multimedia Conference |
Seitenumfang | 5 |
Erscheinungsort | New York, NY, USA |
Herausgeber (Verlag) | ACM |
Erscheinungsdatum | 01.10.2016 |
Seiten | 486-490 |
ISBN (Print) | 978-1-4503-3603-1 |
DOIs | |
Publikationsstatus | Veröffentlicht - 01.10.2016 |
Veranstaltung | 24th ACM Multimedia Conference - Amsterdam, Niederlande Dauer: 15.10.2016 → 19.10.2016 Konferenznummer: 124107 |