Key-point Detection with Multi-layer Center-surround Inhibition

Foti Coleca, Sabrina Zîrnovean, Thomas Käster, Thomas Martinetz, Erhardt Barth

Abstract

We present a biologically inspired algorithm for key-point detection based on multi-layer and nonlinear center-surround inhibition. A Bag-of-Visual-Words framework is used to evaluate the performance of the detector on the Oxford III-T Pet Dataset for pet recognition. The results demonstrate an increased performance of our algorithm compared to the SIFT key-point detector. We further improve the recognition rate by separately training codebooks for the ON- and OFF-type key points. The results show that our key-point detection algorithms outperform the SIFT detector by having a lower recognition-error rate over a whole range of different key-point densities. Randomly selected keypoints are also outperformed.

OriginalspracheEnglisch
TitelProceedings of the 9th International Conference on Computer Vision Theory and Application
Redakteure/-innenSebastiano Battiato
Seitenumfang8
BandVol. 1
ErscheinungsortLisbon, Portugal
Herausgeber (Verlag)SciTePress
Erscheinungsdatum01.01.2014
Auflage1
Seiten386-393
ISBN (Print)9897580042, 978-9897580048
DOIs
PublikationsstatusVeröffentlicht - 01.01.2014
VeranstaltungThe International Conference on Computer Vision Theory and Applications - Lisbon / Lissabon, Portugal
Dauer: 05.01.201408.01.2014
http://www.visapp.visigrapp.org/?y=2014

Fingerprint

Untersuchen Sie die Forschungsthemen von „Key-point Detection with Multi-layer Center-surround Inhibition“. Zusammen bilden sie einen einzigartigen Fingerprint.

Zitieren